IAN is committed to producing practical, user-centered communications that foster a better understanding of science and enable readers to pursue new opportunities in research, education, and environmental problem-solving. Our publications synthesize scientific findings using effective science communication techniques.

Multi-scale trend analysis of water quality using error propagation of generalized additive models (Page 1)

Multi-scale trend analysis of water quality using error propagation of generalized additive models

Beck MW, Valpine PD, Murphy R, Wren I, Chelsky A, Foley M, Senn DB ·
2021

Effective stewardship of ecosystems to sustain current ecological status or mitigate impacts requires nuanced understanding of how conditions have changed over time in response to anthropogenic pressures and natural variability. Detecting and appropriately characterizing changes requires accurate and flexible trend assessment methods that can be readily applied to environmental monitoring datasets. A key requirement is complete propagation of uncertainty through the analysis.

Read more

Inferring Controls on Dissolved Oxygen Criterion Attainment in the Chesapeake Bay (Page 1)

Inferring controls of dissolved oxygen criterion attainment in the Chesapeake Bay

Langendorf RE, Lyubchich V, Testa JM, Zhang Q ·
2021

Environmental monitoring programs generate multivariate time series for the assessment of ecosystem health. Recent developments in causal inference offer ways to translate these observational data into networks able to explain gains and losses in the trajectories of indicator variables. Here, we present a case study of this approach using surface water dissolved oxygen (DO) criteria attainment across the Chesapeake Bay.

Read more

Chesapeake legacies: The importance of legacy nitrogen to improving Chesapeake Bay water quality (Page 1)

Chesapeake legacies: The importance of legacy nitrogen to improving Chesapeake Bay water quality

Chang SY, Zhang Q, Byrnes DK, Basu NB, Van Meter KJ ·
2021

In the Chesapeake Bay, excess nitrogen (N) from both landscape and atmospheric sources has for decades fueled algal growth, disrupted aquatic ecosystems, and negatively impacted coastal economies. Since the 1980s, Chesapeake Bay Program partners have worked to implement a wide range of measures across the region—from the upgrading of wastewater treatment plants to implementation of farm-level best management practices—to reduce N fluxes to the Bay.

Read more

Supporting cost-effective watershed management strategies for Chesapeake Bay using a modeling and optimization framework (Page 1)

Supporting cost-effective watershed management strategies for Chesapeake Bay using a modeling and optimization framework

Kaufman DE, Shenk GW, Bhatt G, Asplen KW, Devereux OH, Rigelman JR, Ellis JH, Hobbs BF, Bosch DJ, Houtven GLV, McGarity AE, Linker LC, Ball WP ·
2021

Extensive efforts to adaptively manage nutrient pollution rely on Chesapeake Bay Program’s (Phase 6) Watershed Model, called Chesapeake Assessment Scenario Tool (CAST), which helps decision-makers plan and track implementation of Best Management Practices (BMPs). We describe mathematical characteristics of CAST and develop a constrained nonlinear BMP-subset model, software, and visualization framework.

Read more

An approach for decomposing river water-quality trends into different flow classes (Page 1)

An approach for decomposing river water-quality trends into different flow classes

Zhang Q, Webber JS, Moyer DL, Chanat JG ·
2021

A number of statistical approaches have been developed to quantify the overall trend in river water quality, but most approaches are not intended for reporting separate trends for different flow conditions. We propose an approach called FN2Q, which is an extension of the flow-normalization (FN) procedure of the well-established WRTDS (“Weighted Regressions on Time, Discharge, and Season”) method.

Read more

How to Protect Free Flowing Rivers: The Bita River Ramsar Site as an Example of Science and Management Tools Working Together (Page 1)

How to Protect Free Flowing Rivers: The Bita River Ramsar Site as an Example of Science and Management Tools Working Together

Suárez CF, Paez-Vasquez M, Trujillo F, Usma JS, Thieme M, Bassi AM, Naranjo LG, Costanzo S, Manrique O, Pallaske G, and Flechas J ·
2021

The Orinoco river basin is the third largest river in the world by volume. Its catchment encompasses 27 major sub-basins including the Bita with a catchment area of about 825,000 ha, which originates in the Colombian high plains in the Llanos ecoregion.

Read more

Susan Lynn Williams: the Life of an Exceptional Scholar, Leader, and Friend (1951–2018) (Page 1)

Susan Lynn Williams: the Life of an Exceptional Scholar, Leader, and Friend (1951–2018)

Dennison WC, Bracken MES, Brown M, Bruno JF, Carlton JT, Carpenter RC, Carruthers TJB, Dethier MN, Duarte CM, Fisher TR, Fourqurean JW, Grosberg RK, Hamdan LJ, Heck KL, Howard DJ, Hughes AR, Hughes BB, Kendrick GA, Kenworthy WJ, Mars F, McRoy CP, Naylor RL, Nyden B, Ogden JC, Olyarnik S, Orth RJ Short FT, Sorte CJB, Stachowicz JJ Strong DR, Sur C, Waycott M ·
2021

Susan Lynn Williams (1951–2018) was an exceptional marine ecologist whose research focused broadly on the ecology of benthic nearshore environments dominated by seagrasses, seaweeds, and coral reefs. She took an empirical approach founded in techniques of physiological ecology. Susan was committed to applying her research results to ocean management through outreach to decision-makers and resource managers.

Read more

Nutrient limitation of phytoplankton in Chesapeake Bay: Development of an empirical approach for water-quality management (Page 1)

Nutrient limitation of phytoplankton in Chesapeake Bay: Development of an empirical approach for water-quality management

Zhang Q, Fisher TR, Trentacoste EM, Buchanan C, Gustafson AB, Karrh R, Murphy RR, Keisman J, Wu C, Tian R, Testa JM, Tango PJ ·
2021

Understanding the temporal and spatial roles of nutrient limitation on phytoplankton growth is necessary for developing successful management strategies. Chesapeake Bay has well-documented seasonal and spatial variations in nutrient limitation, but it remains unknown whether these patterns of nutrient limitation have changed in response to nutrient management efforts.

Read more

Temporal inequality of nutrient and sediment transport: a decision-making framework for temporal targeting of load reduction goals (Page 1)

Temporal inequality of nutrient and sediment transport: A decision-making framework for temporal targeting of load reduction goals

Preisendanz HE, Veith TL, Zhang Q, Shortle J ·
2021

Nutrient and sediment transport exhibit strong spatial and temporal inequality, with a small percentage of locations and events contributing to the vast majority of total annual loads. The processes for determining how to reduce total annual loads at a watershed scale often target spatial, but not temporal, components of inequality.

Read more

Unfamiliar Territory: Emerging Themes for Ecological Drought Research and Management (Page 1)

Unfamiliar Territory: Emerging Themes for Ecological Drought Research and Management

Crausbay SD, Betancourt J, Bradford J, Cartwright J, Dennison WC, Dunham J, Enquist CAF, Frazier AG, Hall KR, Littell JS, Luce CH, Palmer R, Ramirez AR, Rangwala I, Thompson L, Walsh BM, Carter S ·
2020

Novel forms of drought are emerging globally, due to climate change, shifting teleconnection patterns, expanding human water use, and a history of human influence on the environment that increases the probability of transformational ecological impacts. These costly ecological impacts cascade to human communities, and understanding this changing drought landscape is one of today’s grand challenges.

Read more